3.8.38 \(\int \frac {(c+d x)^{3/2}}{x (a+b x)^{3/2}} \, dx\)

Optimal. Leaf size=119 \[ -\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2}}+\frac {2 \sqrt {c+d x} (b c-a d)}{a b \sqrt {a+b x}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {98, 157, 63, 217, 206, 93, 208} \begin {gather*} -\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2}}+\frac {2 \sqrt {c+d x} (b c-a d)}{a b \sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(3/2)/(x*(a + b*x)^(3/2)),x]

[Out]

(2*(b*c - a*d)*Sqrt[c + d*x])/(a*b*Sqrt[a + b*x]) - (2*c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c
 + d*x])])/a^(3/2) + (2*d^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/b^(3/2)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(c+d x)^{3/2}}{x (a+b x)^{3/2}} \, dx &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}+\frac {2 \int \frac {\frac {b c^2}{2}+\frac {1}{2} a d^2 x}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{a b}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}+\frac {c^2 \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{a}+\frac {d^2 \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{b}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}+\frac {\left (2 c^2\right ) \operatorname {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{a}+\frac {\left (2 d^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{b^2}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {\left (2 d^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{b^2}\\ &=\frac {2 (b c-a d) \sqrt {c+d x}}{a b \sqrt {a+b x}}-\frac {2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {2 d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.14, size = 158, normalized size = 1.33 \begin {gather*} \frac {2 \left (-\frac {b^2 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2}}+\frac {d^{3/2} \sqrt {b c-a d} \sqrt {\frac {b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b c-a d}}\right )}{\sqrt {c+d x}}+\frac {b \sqrt {c+d x} (b c-a d)}{a \sqrt {a+b x}}\right )}{b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(3/2)/(x*(a + b*x)^(3/2)),x]

[Out]

(2*((b*(b*c - a*d)*Sqrt[c + d*x])/(a*Sqrt[a + b*x]) + (d^(3/2)*Sqrt[b*c - a*d]*Sqrt[(b*(c + d*x))/(b*c - a*d)]
*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/Sqrt[c + d*x] - (b^2*c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x]
)/(Sqrt[a]*Sqrt[c + d*x])])/a^(3/2)))/b^2

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 0.79, size = 274, normalized size = 2.30 \begin {gather*} -\frac {2 c^{3/2} \sqrt {d} \sqrt {\frac {b}{d}} \tanh ^{-1}\left (-\frac {\sqrt {b} (c+d x)}{\sqrt {a} \sqrt {c} \sqrt {d}}+\frac {\sqrt {d} \sqrt {\frac {b}{d}} \sqrt {c+d x} \sqrt {a+\frac {b (c+d x)}{d}-\frac {b c}{d}}}{\sqrt {a} \sqrt {b} \sqrt {c}}+\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}}\right )}{a^{3/2} \sqrt {b}}-\frac {2 d^2 \sqrt {\frac {b}{d}} \log \left (\sqrt {a+\frac {b (c+d x)}{d}-\frac {b c}{d}}-\sqrt {\frac {b}{d}} \sqrt {c+d x}\right )}{b^2}-\frac {2 \sqrt {c+d x} \left (a d^2-b c d\right ) \sqrt {a+\frac {b (c+d x)}{d}-\frac {b c}{d}}}{a b (a d+b (c+d x)-b c)} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(c + d*x)^(3/2)/(x*(a + b*x)^(3/2)),x]

[Out]

(-2*(-(b*c*d) + a*d^2)*Sqrt[c + d*x]*Sqrt[a - (b*c)/d + (b*(c + d*x))/d])/(a*b*(-(b*c) + a*d + b*(c + d*x))) -
 (2*c^(3/2)*Sqrt[b/d]*Sqrt[d]*ArcTanh[(Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d]) - (Sqrt[b]*(c + d*x))/(Sqrt[a]*Sqrt[
c]*Sqrt[d]) + (Sqrt[b/d]*Sqrt[d]*Sqrt[c + d*x]*Sqrt[a - (b*c)/d + (b*(c + d*x))/d])/(Sqrt[a]*Sqrt[b]*Sqrt[c])]
)/(a^(3/2)*Sqrt[b]) - (2*Sqrt[b/d]*d^2*Log[-(Sqrt[b/d]*Sqrt[c + d*x]) + Sqrt[a - (b*c)/d + (b*(c + d*x))/d]])/
b^2

________________________________________________________________________________________

fricas [B]  time = 2.68, size = 956, normalized size = 8.03 \begin {gather*} \left [\frac {{\left (a b d x + a^{2} d\right )} \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {d}{b}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + {\left (b^{2} c x + a b c\right )} \sqrt {\frac {c}{a}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a^{2} c + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {c}{a}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) + 4 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b^{2} x + a^{2} b\right )}}, -\frac {2 \, {\left (a b d x + a^{2} d\right )} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d^{2} x^{2} + a c d + {\left (b c d + a d^{2}\right )} x\right )}}\right ) - {\left (b^{2} c x + a b c\right )} \sqrt {\frac {c}{a}} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a^{2} c + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {c}{a}} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b^{2} x + a^{2} b\right )}}, \frac {2 \, {\left (b^{2} c x + a b c\right )} \sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c d x^{2} + a c^{2} + {\left (b c^{2} + a c d\right )} x\right )}}\right ) + {\left (a b d x + a^{2} d\right )} \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {d}{b}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b^{2} x + a^{2} b\right )}}, \frac {{\left (b^{2} c x + a b c\right )} \sqrt {-\frac {c}{a}} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {c}{a}}}{2 \, {\left (b c d x^{2} + a c^{2} + {\left (b c^{2} + a c d\right )} x\right )}}\right ) - {\left (a b d x + a^{2} d\right )} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d^{2} x^{2} + a c d + {\left (b c d + a d^{2}\right )} x\right )}}\right ) + 2 \, {\left (b c - a d\right )} \sqrt {b x + a} \sqrt {d x + c}}{a b^{2} x + a^{2} b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a*b*d*x + a^2*d)*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a
*b*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) + (b^2*c*x + a*b*c)*sqrt(c/a)*log((8*a^
2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a^2*c + (a*b*c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt
(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*(b*c - a*d)*sqrt(b*x + a)*sqrt(d*x + c))/(a*b^2*x + a^2*b), -1/2*(2*
(a*b*d*x + a^2*d)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^
2 + a*c*d + (b*c*d + a*d^2)*x)) - (b^2*c*x + a*b*c)*sqrt(c/a)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)
*x^2 - 4*(2*a^2*c + (a*b*c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) -
 4*(b*c - a*d)*sqrt(b*x + a)*sqrt(d*x + c))/(a*b^2*x + a^2*b), 1/2*(2*(b^2*c*x + a*b*c)*sqrt(-c/a)*arctan(1/2*
(2*a*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) + (a*b
*d*x + a^2*d)*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a*b*d)*sqrt
(b*x + a)*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(b*c - a*d)*sqrt(b*x + a)*sqrt(d*x + c))/(a*b
^2*x + a^2*b), ((b^2*c*x + a*b*c)*sqrt(-c/a)*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sq
rt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) - (a*b*d*x + a^2*d)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a
*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a*c*d + (b*c*d + a*d^2)*x)) + 2*(b*c - a*d)*sqrt(b*x +
 a)*sqrt(d*x + c))/(a*b^2*x + a^2*b)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:

________________________________________________________________________________________

maple [B]  time = 0.02, size = 306, normalized size = 2.57 \begin {gather*} \frac {\sqrt {d x +c}\, \left (\sqrt {a c}\, a b \,d^{2} x \ln \left (\frac {2 b d x +a d +b c +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}}{2 \sqrt {b d}}\right )-\sqrt {b d}\, b^{2} c^{2} x \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}}{x}\right )+\sqrt {a c}\, a^{2} d^{2} \ln \left (\frac {2 b d x +a d +b c +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}}{2 \sqrt {b d}}\right )-\sqrt {b d}\, a b \,c^{2} \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}}{x}\right )-2 \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a d +2 \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, b c \right )}{\sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\, \sqrt {a c}\, \sqrt {b x +a}\, a b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x)

[Out]

(d*x+c)^(1/2)*(ln(1/2*(2*b*d*x+a*d+b*c+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))*x*a*b*d^2*(a*c)^(1/
2)-ln((a*d*x+b*c*x+2*a*c+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2))/x)*x*b^2*c^2*(b*d)^(1/2)+(a*c)^(1/2)*ln(1/2*(2
*b*d*x+a*d+b*c+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))*a^2*d^2-(b*d)^(1/2)*ln((a*d*x+b*c*x+2*a*c+2
*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2))/x)*a*b*c^2-2*(b*d)^(1/2)*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*a*d+2*(b*d)
^(1/2)*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*b*c)/a/((b*x+a)*(d*x+c))^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)/(b*x+a)^(1/2
)/b

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/x/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c+d\,x\right )}^{3/2}}{x\,{\left (a+b\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(3/2)/(x*(a + b*x)^(3/2)),x)

[Out]

int((c + d*x)^(3/2)/(x*(a + b*x)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (c + d x\right )^{\frac {3}{2}}}{x \left (a + b x\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(3/2)/x/(b*x+a)**(3/2),x)

[Out]

Integral((c + d*x)**(3/2)/(x*(a + b*x)**(3/2)), x)

________________________________________________________________________________________